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Abstract. Engineering design search and optimisation is a computationally 
expensive and data intensive process. Grid technology offers great potential to 
increase the efficiency of this process and many on-going activities focus on 
utilising computing resources on the grid.  However, it is equally important to 
manage efficiently the vast amount of data produced by grid applications, so 
that data can be shared and reused. In this paper we describe the design and 
implementation of a database toolkit for engineers, which has been incorporated 
into the Matlab environment, to help them manage the large amount of data 
created in distributed applications. In particular the toolkit is built using secure 
file transfer (GSI, GridFTP) and open standards exchange of XML metadata 
between heterogeneous Web services, databases and platform independent Java 
clients. We show an application exemplar of how this toolkit may be used in a 
grid-enabled Computational Electromagnetics design search.  

1. Introduction 

Engineering design search and optimization (EDSO) is the process whereby 
engineering modelling and analysis are exploited to yield improved designs. Design 
parameters that an engineer wishes to optimise are identified, and the optimisation 
problem is specified by design variables, a design objective (objective function), and 
some constraints. The objective function which measures the quality of a particular 
design is computed using an appropriate model. The optimizing algorithm, which 
serves as the design modifier, perturbs each of a selected set of design variables to 
determine how they affect the performance. It is coupled with an appropriate 
engineering analysis code, such as Computational Electromagnetics (CEM) or 
Computational Fluid Dynamics (CFD) code, to analyse the properties of a design, and 
seek a solution that optimizes the objective. This process may involve lengthy and 
repetitive calculations requiring access to significant computational resources. 

Grid technology [1] enables large-scale resource sharing and coordinated problem 
solving within a virtual organisation (VO) - a collection of geographically distributed 
and loosely coordinated groups. By providing scalable, secure, high-performance 
mechanisms for discovering, accessing and utilizing remote resources, Grid 
technology makes scientific collaborations achievable in ways that were previously 
impossible. The Grid allows the sharing of computing power, data resources and 
software applications over the Internet.  

Requirements for long running, compute intensive calculations make the problem 
domain of engineering design search and optimisation using CEM/CFD well-suited to  
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Figure 1 The Geodise architecture, where a scripting environment (e.g. Matlab) can be used 

to integrate grid-based compute, data and knowledge resources for engineering applications. 

the applications of Grid technology. In Geodise [2] our goal is to develop 
sophisticated but easy to use toolkits to help engineers make use of the resources 
available on the Grid. We aim to provide data management and knowledge advice 
services [3] to help users to setup, modify and optimise their designs efficiently. 

While compute power may be easily linked into applications using grid computing 
technologies, there has been less focus on database integration, and even less still on 
providing it in an environment familiar to engineers. In EDSO databases play a 
critical role as a repository for the results from the large number of calculations 
performed, which may be re-examined and reprocessed as part of the EDSO process. 

Traditionally, data in many scientific and engineering disciplines have been 
organized in application-specific file structures, and a great deal of data accessed 
within current Grid environments still exists in this form [4]. When there are a large 
number of files it becomes difficult to find, compare and share the data. We solve this 
problem by using database technologies to store additional information (called 
metadata) describing the nature of the files, so that they can be located easily by 
querying the metadata. Access authorisation information is also stored in the database 
to allow users to setup permissions for data sharing.  

The Storage Resource Broker (SRB) [5] is a client-server middleware addressing 
the issue of providing a uniform interface for connecting to heterogeneous data 
resources over a network. Its Metadata Catalog (MCAT) allows access to data sets 
based on their attributes (metadata) rather than their names or physical locations. 
However, MCAT has limited support for application specific metadata which is often 
essential in assisting engineering users to locate data specific to their problems. 

We adopt open standards (e.g. XML) and a service oriented approach [6] to 
leverage existing database technologies and make them accessible in environments 
that engineers use daily. We have chosen Matlab [7], which is popular in engineering 
community for its ease of use and rich functionality, as such an environment. We 
have developed a set of tools to extend the Matlab functionalities so that engineers 
can make use of the grid computing and data management service in a way that is 
familiar to them. These consist of the Geodise computational toolkit [8], XML 
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toolbox [10] and a database toolkit which is the focus of this paper. These toolkits can 
easily be adapted to work in other scripting environments, such as Jython [11].  

As shown in Figure 1, the building blocks of the engineering software and the data 
management functionality provided by Geodise are wrapped as Web/Grid services 
when appropriate, making use of Java, Grid and .NET technologies. A user accesses 
these services via Geodise provided functions which in turn call a client side Java API 
to communicate with the services. The knowledge service, as described in [3], 
provides intelligent support to the users through an ontology service and dynamic 
advice based on data stored in a database. 

The remainder of this paper is organized as follows: section 2 describes the 
architecture of the Geodise database toolkit; section 3 explains how the service 
components have been incorporated into an engineer-friendly Problem Solving 
Environment (PSE); an example is given in section 4, and section 5 presents the 
conclusion and future work. 

2. Architecture 

A major aim of the Geodise data management architecture is to bring together 
flexible, modular components for managing data on the Grid which can be utilized by 
higher level applications. Another objective is to provide a simple, transparent way 
for engineering users in a VO to archive files in a repository along with additional 
metadata. A simulation or optimisation may take a long time and it may be desirable 
to store files in a database for later re-use/ re-analysis to avoid costly re-computation. 
Although files can be archived and retrieved based on unique identifiers, storing 
additional metadata makes it easier to find a particular file by performing queries over 
more meaningful features, like the design job specification data, creation date, or 
values of design parameters. The user should be able to specify who else can discover 
and retrieve their data and be able to query data they have access to in the VO, 
without needing to know the underlying storage mechanism.  

Such an environment for data management has been provided by the Geodise 
database toolkit, by using open standard technologies from an engineering 
environment. Various types of technical and application specific metadata about files, 
their locations and access rights are stored in databases. Files are stored in file 
systems and transported using the Globus Toolkit [9] which provides middleware for 
building computational grids and their applications. Commodity Grid (CoG) Kits [13] 
expose these functionalities as APIs in languages such as Java, Python and CORBA. 
We use the platform independent Java CoG kit to utilize the Grid Security 
Infrastructure (GSI) [14] for authentication and security, and GridFTP [15] for secure 
file transfer. As shown in Figure 2, client side tools initiate file transfer and call Web 
services for metadata storage, query, authorisation and file location. We now give 
further details of these components of the Geodise database toolkit. 

Accessibility of data by users from remote sites in a VO should be considered to 
enable collaboration. To accommodate this we use the secure and reliable GridFTP 
protocol to transfer files to storage servers, archiving them under a specifically 
generated UUID (Universally Unique IDentifier) [16] as a file handle.  

Access to databases is provided through Web services [6], self-describing 
programmable components that can be invoked over the Web. Web service methods 



www.manaraa.com

may be invoked using the Simple Object Access Protocol (SOAP) [12], which uses a 
combination of XML and HTTP to transfer data between the services regardless of 
their underlying programming language or platform. For example, our Java client 
code running on Linux or Windows can communicate with .NET Web services on a 
Windows server and Java Web services on a Linux server. Client jobs running 
remotely on the Grid can also access these services to retrieve input files from and 
archive results to a repository. This provides a central location for applications 
running on the Grid to exchange data and allows the user to query and retrieve job 
results when convenient.  
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Figure 2 A high level set of scripting functions sits on top of a client side Java API to pro-

vide an interface to data management Web service functionality and secure file transfer. These 
may run locally or on a remote compute resource with the user's authorisation credentials. 

 
The file location service keeps a record of file handles and locations, in terms of 

host and directory, in a database so that a handle is all that is required to locate and 
retrieve a file. The metadata archive service complements file archiving by allowing 
the storage of additional descriptive information detailing a combination of technical 
characteristics (e.g. size, format) and application domain specific metadata. The 
metadata query service provides a facility for engineers to find the data required 
without the need to remember the file names and handles. 

Authorisation is implemented as a service interface to a database of registered 
users, keeping track of permissions on data and mapping between user IDs in the VO 
and Globus Distinguished Names (DN) which are globally unique identifiers 
representing individuals. The authorisation service filters query results and only 
returns metadata about files that the user has access rights to. Authentication is 
achieved with GSI which uses Public Key Infrastructure (PKI) [18] and Secure 
Sockets Layer (SSL) [19] to provide secure communication over the Grid. Every user 
must have a private key and a certificate, containing their DN and public key, which 
is signed by a Certificate Authority.  

We use relational databases [22] for structured data such as authorisation 
information because they are mature, reliable and scalable, and have a well defined 
standard interface which allows generic tools to be developed for operations such as 
creating interfaces and constructing queries. We also use XML repositories for more 
flexible storage of complex, deeply nested engineering specific metadata. In this 
version we use the XML native database Xindice 1.0 [19] which has proved a very 
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flexible solution for prototyping management of engineering metadata. However, the 
current version does not provide the levels of scalability and security we require. Our 
requirements for flexibility and robustness may be met by a relational database 
system with XML capabilities, for example Oracle9i Database [20], IBM DB2 [21], 
and Microsoft SQL Server 2000 [22]. We require a set of services that allow us to 
access and interrogate both types of data storage in a standard way. Other projects are 
tackling this problem for relational databases [23] and XML repositories [24]. We 
currently provide APIs to specific databases with tailored Web services and will use 
these on top of implementations compliant with proposed standards from the OGSA 
[1] Data Access and Integration project [4] and the GGF [25]. 

3. Problem Solving Environment 

Matlab is a powerful scripting environment containing a large number of toolboxes 
tailored to the needs of scientists and engineers. It is a PSE in which users can learn 
quickly how to generate, analyse and visualize their data. Its database toolbox [26] 
uses JDBC to enable insertion and retrieval of data between Matlab and relational 
databases. This is a useful tool for users who already have a local relational database 
they wish to access from Matlab. However, this technology is inappropriate for engi-
neers who do not have an existing database, and are not concerned with the underly-
ing storage schema (e.g. tables and columns) used to store their data. We have imple-
mented a range of grid-enabled Matlab functions (gd_archive, gd_retrieve, 
gd_query) on top of our core database services so that they can be incorporated pro-
grammatically into the user’s scripts in a way that is consistent with the behaviour and 
syntax of the Matlab environment. The basic tasks for an engineer to undertake to 
manage and share their data are to (A) generate the data using their standard engi-
neering tools, (B) store it in the repository, (C) search for data of interest, and (D) 
retrieve results to their local file system. The wrapping of the core services that en-
able these tasks is straightforward as much of the logic of the client side components 
is written in Java, which can be directly exposed to Matlab or other high-level script-
ing environments. For example, it has been proven straightforward to write wrappers 
to expose the client side functionality of the Geodise computational toolkit to Jython 
[11], a pure Java implementation of the Python interpretive scripting environment. 

The gd_archive function stores a given file in a repository for an authenticated 
user. The function is able to generate standard metadata for the file, such as its local 
name, size and format. The user may add additional metadata, for example custom 
application specific information, and a list of users who may access the file. The 
function then transports the file to a server and the metadata to the metadata service 
for storage. The gd_archive function returns a unique handle which can be used to 
retrieve the file at a later date. The locations of databases and file servers are set in a 
configuration file by an administrator of the system. The gd_retrieve function will 
locate a file based on a given file handle and return it to a local directory. 

Matlab allows users to define complex structures in a straightforward way, and this 
is how custom metadata is specified. We provide capabilities for direct conversion 
from these structures to XML, for storage in the metadata database. The metadata can 
be queried by an authorised user with the gd_query command, to discover files that 
have certain characteristics and obtain information about them, such as their handles. 
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Users specify the queries in their scripts using a combination of named metadata 
variables and comparison operators. For example, 'standard.archiveDate>2003-02-01 
& param.radius = 2.3'. An alternative graphical query interface is also provided in 
which selection criteria are specified in a Web form generated from standard metadata 
(Figure 2, bottom left). In this interface there is an option to generate the Matlab code 
needed for retrieving selected files that match the search criteria, which can then be 
cut-and-pasted into the user's own Matlab script.  

When a script based query is performed, the XML metadata results are converted 
back into a Matlab structure which is returned to the PSE. The bi-directional conver-
sion routines are provided by our XML Toolbox for Matlab [10]. The toolbox 
includes functions to convert Matlab variables into XML and vice versa. We use the 
XML toolbox as an underlying tool that the user does not see when calling our 
database functions. As far as the user is concerned they are archiving, querying and 
working with Matlab structures, not XML.  
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Figure 3 Data flow of files and metadata. After file generation (A), the user specifies meta-

data and archives it together with the file (B). When querying (C), a file handle is returned as 
part of the metadata structure and the file can then be retrieved to a local location (D). 

 
Figure 3 shows the Geodise database toolkit from a dataflow perspective. A more 

detailed description is given in next section, to show how the Geodise database toolkit 
has been used in a real world example of CEM design search.  

4. Application Example 

Let us now consider how databases may be used in a Grid environment for a specific 
example: The GEM (Grid-enabled electromagnetic optimisation) project [27] is 
developing software which is used to improve the design of optical components for 
next generation integrated photonic devices. 

Suppose an engineer wants to optimize the electromagnetic transmission properties 
of such an optical component, for example a photonic crystal (PC). A PC consists of a 
periodic structure of holes drilled into a slab of dielectric material as shown in Figure 
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4. The properties and density of the holes determine the transmission properties of 
light through the crystal. There exist certain designs which exhibit a reduction of light 
propagation within a specific frequency range, called a photonic bandgap (PBG) of 
the crystal. It is often desirable to obtain a large bandgap in the frequency spectrum. 
The size of the bandgap for a number of geometries can be investigated by sampling a 
range of parameters (in this case the radius r and distance d) with each sample point 
giving rise to a different value of the objective function. 

The number of initial designs and the number of parameters varied for each design 
can be large and thus gives rise to many solutions and large amounts of data. All of 
these solutions – if good or poor – may yield valuable information for future 
simulations and need to be preserved. 

If we store this information only in a file system as is common practice at present, 
it can be very difficult to find data relating to specific simulation runs. Particularly in 
the post-processing stage of the obtained data, there often is no possibility to search 
for an individual data range, user description. Storing data in databases provides much 
more flexibility and builds on the rich and powerful capabilities they provide. 
Furthermore, when running simulations on the Grid, the parameters for each 
simulation can be requested from a database system. This effectively allows for 
computational steering while the simulation is running by changing the parameters 
stored in the database. 

Incoming EM 
wave (Light)

Transmitted
EM wave

Photonic
Crystal

d 2r

 
Figure 4 Electromagnetic wave transmission in a photonic crystal. The amplitude of the 

transmitted light changes according to the design of the crystal. The design parameters in this 
example are the distance of the holes, d, and their radius, r.  

In this example we shall add a number of PBG designs and populate the database. 
An Engineer creates a new Grid proxy certificate with his/her credentials, then defines 
the problem and populates the database with a number of PBG designs. The computa-
tion might be done locally or on the Grid by using the Geodise computational toolkit 
[6]. The following is a script to create data and archive it; ‘%’ represents a comment. 

 
% create proxy for access to Grid resources  
gd_createproxy; 
 
% define design metadata common to all designs 
m.model = 'pbg_design'; 
   
% do computation for 10,000 design points 
for i=1:10000 
 
  % define random design point in parameter space 
  [m.param.radius, m.param.distance] = designpoint(i); 
  infile  = ['geometry_', num2str(N), '.cad']; 
  outfile = ['spectrum_', num2str(N), '.dat']; 
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  % call routine that creates geometry file (A) 
  create_pbg_geometry_file( infile, m.param ); 
  % archive geometry definition and metadata   (B) 
  gd_archive( infile, m ); 
 
  % Grid compute frequency spectrum for design  
  compute_pbg( m.param, infile, outfile ); 
 
  % post-process result and obtain bandgap 
  m.result.bandgap = postprocess_pbg( outfile ); 
 
  % archive spectrum results and metadata (B) 
  gd_archive( outfile, m ); 
end 
 

Query results: After the computations have finished and the design results are 
available in the database, the Engineer checks the results with a simple query: 
 

% find all PBG designs with bandgap bigger than 99.7 
M = gd_query( 'model = pbg_design & result.bandgap > 99.7' ) (C) 
M: 4x1 struct array with fields 
    standard, access, model, param, result 
 

Now, M is a vector of structures containing the metadata of all PBG designs with 
bandwidth larger than 99.7. In this case, four designs match the query.  

 
Retrieve results: For further investigation or visualization a plot for visual 

comparison, the Engineer decides to retrieve files associated with the above four 
designs to the local file system. 

 
gd_retrieve( {M.standard.fileID}, '/home/Eng007/pbg_files/' ) (D) 
display_freqSpectrum('/home/Eng007/pbg_files/*' ); 
 

The letters (A)-(D) as indicated in the code correspond to the implementation 
details from Figure 2. Figure 5 shows typical data we can obtain for the various 
design parameters. The simulation results form an objective function landscape of the 
photonic bandgap and are the basis from which a full design search may be 
performed. The storage of the results in a database as well as the transfer of files to a 
file store on the Grid allow for a design search, design optimisation and re-use by 
engineers at a later stage through the same transparent Matlab interfaces without 
requiring knowledge of database technologies or specific query languages. 

5. Conclusions and Future Work 

We have described a framework which allows the use of distributed databases on 
the Grid in an engineer-friendly environment. We have implemented a suite of 
services using an architecture which combines a commercial PSE (Matlab) with a core 
framework of open standards and service oriented technologies, namely Grid 
computing, Web services, XML and databases. With a specific example we have 
shown how design search in electromagnetics can be supported by the Geodise 
database toolkit. The transparent integration of database tools into the engineering 
software environment constitutes a starting point for database applications in  
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Figure 5 Shown are the relations between the initial design geometries (derived based on a 

variation of parameters r and d), the computed frequency spectrum, the bandgap obtained by 
post-processing the frequency spectrum, and the final objective function landscape (figure 
shows representative data; dots indicate sample points in the parameter space). 

 
 
engineering design optimisation, and is only one of many potential applications in the 
engineering domain (CFD, CEM, Civil Engineering, etc.). 

The functions we have implemented to extend the Matlab environment allow 
engineers to share and re-use data conveniently from existing scripts. The automatic 
generation of standard metadata and support for user-defined metadata allows queries 
to be formed that represent the Engineer’s view of the data. Data of interest can be 
searched easily using either the Web query interface or the gd_query command.  

Engineering data usually has a nature of complex and nested structure which can 
be better represented in XML rather than in the relational data model. Part of our 
future work will involve providing tools to define XML Schemas that describe 
custom metadata defined by users. XML Schemas allow us to verify the data to 
reduce errors, categorise XML documents to identify similar data, create graphical 
query interfaces for custom metadata, and design an efficient storage strategy, 
possibly integrated with ontologies developed by Geodise [3] for EDSO. Geodise will 
provide a graphical user interface to help engineers constructing their workflows, 
which will need to interact with databases to provide users with up-to-date 
information. We plan to extend our existing database toolkit to support the workflow 
construction interface. We will also evolve our Web service based components to 
OGSA-DAI compliant Grid services, which are a combination of Web services and 
Grid technology described in the Open Grid Services Architecture (OGSA) [1], the 
next generation of the Globus Toolkit. 
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